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ABSTRACT
The paper addresses content-based image retrieval from texture data-
bases, by using stochastic modeling in the wavelet domain. It pro-
poses an analysis of the key parameters involved in such a content-
based texture retrieval. These parameters are the wavelet order and
the goodness-of-fit measure used to select the best family of distri-
butions for modeling the subband wavelet coefficients. It is shown
that taking suitable parameters into consideration makes it possible
to attain high retrieval rates in content-based texture retrieval.

Index Terms— Stochastic modeling ; Wavelets ; Texture ; Similarity.

1. INTRODUCTION

Stochastic modeling in the wavelet domain has proven efficiency in
Content Based Image Retrieval (CBIR) on texture databases, see [1],
[2], [3] and [4], among others. The contribution of this paper in this
research field consists in providing statistical analyzis that makes
possible selection of nearly optimal parameters among the key pa-
rameters involved in CBIR. These fundamental parameters are 1) the
wavelet function and 2) the goodness-of-fit measure used for select-
ing the best family of stochastic models that will be associated with
the database. Looking for relevant parameters is addressed from a
non-parametric statistical point of vue.

The organisation of the paper is as follows. First, Section 2
discusses the selection of the best wavelets with respect to desir-
able statistical properties such as stationarization, decorrelation and
higher order dependency reduction. These properties are required
in that they make it possible to achieve texture representations that
can be more closely approximated by stochastic modeling, under the
assumption that the subband wavelet coefficients are approximately
independent and identically distributed, iid.

Then, Section 3 addresses the selection of a measure that can
provide accurate information on how suitable the stochastic model-
ing is, with respect to the whole database. This measure involves
analysing the statistics of the sequence of goodness-of-fit measures
from the database under consideration. In contrast with the standard
measures based on computing the acceptance rate of the correspond-
ing stochastic models, the approach proposed in this paper is shown
to be coherent with CBIR performance measurements.

Section 4 provides CBIR results to highlight the importance of
selecting relevant parameters and Section 5 concludes the work.

2. WAVELET OF STOCHASTIC PROCESSES: WHICH
BASIS, WHICH WAVELET ORDER?

Textures are inherently non-smooth and stochastic modeling has proven
its suitability in their representations. Best representations for a

stochastic process relate to transforms that have stationarization and
statistical dependency reduction properties between the several ran-
dom variables describing the temporal or spatial evolution of the
stochastic process. Among the transforms that approximately achieve
this goal, wavelet decompositions are of interest in this work be-
cause wavelets operate unconditionally with respect to the input pro-
cess and tend to achieve desirable stationarization and decorrelating
properties for a large class of stochastic processes. This class con-
tains stationary random processes (see [5], [6], [7], among others).
It also contains many non-stationary random processes (see [8], [9],
[10], [11], [12], among others).

For non-stationary random processes, stationarization mainly oc-
curs in detail wavelet coefficients (see for instance [8]). In addition,
when the coefficients are or become stationary, then dependency re-
duction is shown to be higher with larger order wavelets [6], [8], [9],
the wavelet order refering hereafter to the number of vanishing mo-
ments of the wavelet function (see [8] for a more formal definition).
This follows from that the asymptotic decorrelation and/or higher
order cumulant decay are proven in [6], [8], [9], provided that this
wavelet order tends to infinity.

From these results, one can assume that, in a more general con-
text involving many stochastic processes, then wavelets with higher
orders will lead to a more stationarization effect and better depen-
dency reductions. Proving formally this assumption is not straight-
forward and is not addressed in this paper since all the theoretical
results avalaible from the literature on wavelets and stochastic pro-
cesses confirm its truthfulness (see the above references). In this
respect, a wavelet with order r � r0 will hereafter sayed to yield a
better iid-like representation than a wavelet with order r0.

In practice, order r = ∞ is unworkable numerically since it
yields infinite sequences of filter coefficients. However, orders r =
7, 8 are shown to be reasonable for approximately attaining the desir-
able statistical properties mentioned above for many stochastic pro-
cesses, [6], [8]. We will thus consider a symlet wavelet of order 8
as a relevant wavelet and comparison will be held with respect to
the representation and performance achieved by the symlet wavelet
of order 1, that is the Haar wavelet. In particular, we will see, in
Section 3.2, that the “Symlet 8” wavelet achieve a better iid-like rep-
resentation than the Haar wavelet, from stochasticity measurements
under iid assumption on the wavelet coefficients of VisTeX1 textures.

At this stage, it is worth emphasizing that the theoretical results
cited above are proven in the framework of orthonormal wavelet and
wavelet packet transforms. However, when analysis (and not com-
pression) is concerned, then redundancy is often desirable since it
provides additional information for the input random process de-

1MIT Vision Texture database, available at http://vismod.www.
media.mit.edu.



scription. It is then convenient to find redundant transforms that be-
have approximately like the orthonormal wavelet and wavelet packet
transforms. The discrete Stationary Wavelet Transform, SWT [13]
and its wavelet packet based extension, SWPT, are such good can-
didates: the SWT (resp. SWPT) can be seen as the union of several
orthogonal discrete wavelet (resp. wavelet packet) transforms, any
of these transforms having the desired statistical properties. For the
sake of tractability of the representation, we will consider the SWT
in the following. The SWT is a particular basis among the SWPT
bases and the above issue is justified by that the SWT has the advan-
tage of presenting lower computational load than a full SWPT.

3. HOW TO PERFORM MODEL VALIDATION WHEN NO
ALTERNATIVE HYPOTHESIS EXISTS?

This section addresses the problem of selecting the best family of
distribution functions for modeling the subband wavelet coefficients.
The selection assumes avalaibility of a suitable Goodness Of Fit
(GOF) measure with respect to the distribution model and the (resid-
ual) stationarity and correlation structures that may remain in wavelet
subbands. We first address the selection of the GOF measure in Sec-
tion 3.1. Cumulative and uniform criteria based on GOF measure-
ments on whole databases is then proposed in order to select the best
distribution family for stochastic modeling, in Section 3.2.

3.1. Selection of a goodness-of-fit measure

A relevant GOF measure should be sensitive to

• a weak correlation characterizing a set of data issued from
the observation of a random process (Example: detail wavelet
coefficients in presence of a smooth region),

• a few number of large coefficients that decay in a certain or-
der, among a set of iid data (Example: exponential decay of
the wavelet coefficients in the neighborhood of edges).

In order to find the relevant GOF measure, we analyze in the
following, the sensitivity of different GOF tests for detecting such
correlation structures on synthetic data. The tests selected after a
first comparison from the literature are the Kolmogorov-Smirnov —
KS — test [14] (uniform norm for comparing the empirical cdf and
the model), the chi-square — χ2 — test [15] (`2 norm for compar-
ing the model to a corresponding pdf obtained from binned data)
and the Anderson-Darling — AD — test [16] (`1 norm applied for
comparing the empirical cdf to the model).

The sensitivity of these GOF tests with respect to the above cor-
relation structures is tested in the following experimental setup:

(C1) Correlation is inserted by setting yk = νyk−1 + xk, with
0 < ν < 1, where the sequence x = {xk}k=1,2,...,N is iid
Gaussian with zero-mean and variance σ2

X .

(C2) Data are assumed to be of the form y = {θ, x}, where θ =
{θi}i=1,2,...,M1 and x = {xj}j=1,2,...,M2 , withM1 +M2 =
N . Subset θ of y is chosen so as to follow a geometric pro-
gression, θk = rθk−1, r = 1/

√
2, θ1 = 2 × max |x| and

subset x is a realization of some iid random variables.

Under (C1), the random variable Yk has zero-mean and variance
σ2
Yk

E[Y 2
k ] = ν2E[Y 2

k−1] + σ2
X , with σ2

Y0
= σ2

X . When ν ∼= 0, it is
reasonable to assume as null hypothesis that: y = {yk}k=1,2,...,N is
iid with the same cdf as X . The experiment concerning (C1) con-
sists in testing this null hypothesis when ν increases from 0 to 1/2.
A suitable stochasticity measurement should significantly reject this

hypothesis when ν is larger than 0. The cdf of X will be Gaussian
with standard deviation σ2

X = 1 in the experiments under (C1).
Under (C2), the random sequence Yk, k = 1, 2, . . . , N is com-

posed of a large number of iid random variables Yk = Xk for
k = 1, 2, . . . ,M2 with cdf F and some M1 = N − M2 non-
stochastic subset. The experiment concerning (C2) consists in test-
ing the null hypothesis that is: Yk, k = 1, 2, . . . , N is iid with cdf F
when the numberM1 of non-stochastic data increases. F will be the
either Gaussian or Weibull cdfs concerning experiments under (C2).

Table 1. Tests for the assesment of the deviation from the null hypothe-
sis: Average values in “percentage of reject” for the iid assumption under
correlation structures (C1) and (C2).

Correlation structure (C1)
ν: 0.05 - 0.1 - 0.15 - 0.20 - 0.25 - 0.30 - 0.35

AD 05.14 - 05.23 - 05.13 - 05.21 - 05.20 - 05.31 - 05.56
Gaussian KS 03.28 - 07.71 - 40.00 - 98.72 - 100 - 100 - 100

χ2 14.55 - 44.21 - 97.85 - 100 - 100 - 100 - 100

Correlation structure (C2)
100×M1/N : 0.1 - 0.4 - 0.7 - 1.0 - 1.3 - 1.6 - 1.9

AD 0 - 0 - 0 - 0 - 0 - 0 - 0
Gaussian KS 02.58 - 04.45 - 09.94 - 23.80 - 58.32 - 100 - 100

χ2 0 - 0 - 0 - 0 - 0 - 0 - 0
AD 100 - 100 - 100 - 100 - 100 - 100 - 100

Weibull KS 02.73 - 04.46 - 09.81 - 23.90 - 58.78 - 100 - 100
χ2 0 - 0 - 0 - 0 - 0 - 0 - 0

Experimental results are provided in Table 3.1. We have that:

χ2 : The χ2 test is performant for detecting (C1) and irrelevant
for assesing (C2). The binning and cumulative norm has the
effect of masking deviation from the cdf specified, when this
deviation concerns a small portion of the data. In addition,
the χ2 test requires a sufficient sample size for an accurate
binning and its approximation lacks to be precise for small
sample sizes. This is why this test is not sufficiently relevant
in our context.

AD : The AD test is very relevant when Weibull distribution is con-
cerned under (C2), but is highly irrelevant for Gaussian dis-
tribution under (C1) and (C2). This is possibly due to that the
AD behaviour closely relates on the model distribution in the
sense that its critical values are distribution-dependent.

KS : The KS test proves its relevancy through results of Table 3.1.
Indeed, the KS test progressively rejects the null hypothesis
when the correlation (C1) (resp. (C2)) induces deviation from
the null hypothesis (large value of ν, resp. large portion of
non-stochastic data).

3.2. Selection of the best family of stochastic models

From the results of Section 3.1, we have that the KS test is the most
suitable GOF test for emphazing the relevance of a model with re-
spect to most commonly encountered correlation structures when the
detail wavelet subbands are concerned. In this sense, we consider the
Kolmogorov measure associated with this test in the rest of the pa-
per. Let x = {x(`)}`=1,2,...,N . Then, the Kolmogorov measure
describes how well x can be considered as a realization of iid ran-
dom variables with cdf F by measuring the deviation of F from the



empirical distribution Fx,N of x:

λN (x, F ) =
√
N sup

t
|Fx,N (t)− F (t)| . (1)

Assume that a given database have to be associated with a family
of stochastic models, among a given set of stochastic families. The
main question is: how to assess the relevance of a particular family
from Kolmogorov measurements computed over the database?

This question is motivated by that the standard criterion consist-
ing in computing the acceptance rate of the null hypothesis (num-
ber of suitable models) turns out to be irrelevant for CBIR purpose
in real world textures. First, we have that admissible critical val-
ues for the KS test yield a very high percentage of reject for the
null hypothesis, when modeling the wavelet subbands of standard
texture databases. This holds true for all the standard distribution
families. In addition, the acceptance rate tends to incoherent with
CBIR performance statistics. Indeed, on the basis of the χ2 test and
this criterion, the “Generalised Gaussian” family was shown to be
more relevant than “Weibull” family for modeling textures of the
VisTeX database, whereas the “Weibull” family has shown better
CBIR performance than the “Generalised Gaussian” family on the
same database: [2]. This inconsistency is probably due to that for
rejected samples, the above criterion does not take into account, in-
formation on the closeness of the model to the empirical distribution
; whereas none of the texture samples is rejected when computing
the CBIR similarity measurements: all textures in the database are
finally associated with stochastic models so that no alternative hy-
pothesis is avalaible in such a CBIR.

Instead of computing the acceptance rate of the models issued
from a given stochastic family per texture, the model validation scheme
proposed below involves selecting the best model family by analyz-
ing the statistical behaviour of the sequence composed of all GOF
measurements characterizing the whole database. More precisely, let
D be a database composed ofM elements: D = {zk : k = 1, 2, . . . ,M},
where zk = {zk(`)}`=1,2,...,N for every k. Denote by fµ,θ , the dis-
tribution indexed by the family µ and where index θ = θ(µ) refers
to the parameters of the distribution. Example: if µ = “Generalised
Gaussian” , then θ(µ) = (location, scale, shape).

In what follows, we assume that for a given sample set zk, the
parameters θ(µ) are computed from the maximum likelihood over
the set of all possible parameters for the distributions indexed by µ.
For the sake of simplifying notation, we let fµ,θ ≡ fµ. Let Fµ be
the cdf associated with fµ. The sequence of GOF measurements
associated with distribution family µ over D is

sµ,N = {λN (zk, Fµ(zk)) : k = 1, 2, . . . ,M} .

Among the set of statistics characterizing the sequence sµ,N ,
we consider its mean value as the main parameter and the maximum
value as the second informative parameter for selecting the best fam-
ily of model. The mean value is a cumulative measure taking into
account the above deviations on every element of D. The maxi-
mum value highlights the deviation resulting from the worst stochas-
tic modeling on D. Since the parameter λN measures the deviation
of the emprical cdf from the corresponding model, then, for a given
sample zk, the stochastic modeling associated with the smallest λN
is considered to be the more relevant. Similarly, when both mean and
maximum parameters are the smallest parameters for a specific fam-
ily µ0 of stochastic models, then this family is decidedly the most
relevant between the tested families.

In the following experimental results, µ is either a “Generalised
Gaussian” (GG) or a “Weibull” (WBL) distribution. We consider 40
textures from the VisTeX database. We proceed by splitting each

image into 16 non-overlapping subimages (128 × 128 pixels per
subimage), forming a set of 640 texture samples. Every subimage
I is then decomposed by using the SWT where the decomposition
level is fixed to J0 = 4. Let (cj,n[I])j,n, j ∈ {1, 2 . . . , J0}, n ∈
{1, 2, 3}, be the sequence of SWT subbands of I . Then the test
database D is the set of M = 640 × 3 × J0 subband SWT detail
coefficients.

Table 2 provides the above reference statistics for sequences
sµ = sµ,N/

√
N for µ = GG, WBL. The results given in Table

Table 2. Statistics for sµ = sµ,N/
√
N from D, where µ ∈ {GG,WBL}.

Smallest parameters refers to a best fitting of the database by the family µ.
Model
Statistics
“Haar”
“Symlet 8”

µ = GG
Mean(sµ) - Max(sµ)

0.1138 - 0.2141
0.1110 - 0.2125

µ = WBL
Mean(sµ) - Max(sµ)

0.0614 - 0.1261
0.0205 - 0.0447

2 highlights that 1) the WBL family performs a more relevant fit-
ing than GG family and 2) “Symlet 8” representation is better than
“Haar” representation in terms of the iid property. The above items
1) and 2) hold true both in terms of cumulative (mean value) and
uniform (max value) deviations of the models versus the empirical
distributions on D. Furthermore, we has that item 2) corroborates
the analysis performed in Section 2, meaning that stationarization
and iid properties are better achieved by using wavelets with higher
order.

Table 3. GG based texture-specific retrieval from the VisTeX database.
Texture “Haar” “Symlet 8”
Bark.00 63.28 67.58
Bark.06 68.75 67.97
Bark.08 62.11 65.63
Bark.09 38.28 42.19
Bric.01 99.22 100
Bric.04 86.33 88.28
Bric.05 84.77 88.67
Buil.09 74.61 74.22
Fabr.00 99.22 87.5
Fabr.04 79.69 85.55
Fabr.07 90.23 96.88
Fabr.09 42.97 100
Fabr.11 90.63 85.55
Fabr.14 75.78 100
Fabr.15 94.53 93.36
Fabr.17 97.66 94.92
Fabr.18 98.44 98.83
Flow.05 75.78 77.73
Food.00 100 94.92
Food.05 65.63 65.23

Texture “Haar” “Symlet 8”
Food.08 23.05 99.22
Grass.01 94.92 98.05
Leav.08 66.80 73.83
Leav.10 66.80 60.94
Leav.11 63.67 65.23
Leav.12 81.25 79.69
Leav.16 55.08 63.67
Meta.00 84.38 85.94
Meta.02 100 100
Misc.02 95.70 97.27
Sand.00 96.09 94.53
Ston.01 48.83 75.78
Ston.04 92.97 93.75
Terr.10 46.09 57.42
Tile.01 55.47 60.55
Tile.04 41.02 98.83
Tile.07 100 97.27
Wate.05 100 100
Wood.01 60.94 60.55
Wood.02 100 100

4. EXPERIMENTAL RESULTS

In this section, we present experimental results proving that perform-
ing CBIR with respect to a relevant wavelet (in terms of stationariza-
tion, decorrelation and higher order dependence reduction) and best
joint family of stochastic models (in terms of the statistical prop-
erties of the sequence sµ,N ) leads to high retrieval rates in texture
recognition.

The same databaseD introduced in Section 3.2 is considered for
the experimental results given below. The stochastic modeling of the



subband wavelet coefficients is addressed by using the GG and the
WBL distribution functions.

Recall thatD have been obtained from the detail SWT subbands

(cj,n[I`])j∈{1,2...,J0},n∈{1,2,3}

of subimages I`, ` = 1, 2, . . . , 640, from the VisTeX database. Then,
in order to compare a query subimage Iq with an arbitrary subim-
age I`, we use the following cumulative similarity measure from
the SWT detail coefficients (which assumes that independence is ap-
proximately attained in the SWT subbands):

KW(Iq, I`) =
∑

j∈{1,2...,J0}
n∈{1,2,3}

K(cj,n[Iq], cj,n[I`]) (2)

where cj,n[Iq], cj,n[I`] are the subband (j, n) SWT coefficients of
Iq , I` respectively and K is a similarity measure chosen to be a
symmetric version of the Kullback-Leibler divergence. For two ran-
dom variables X1 and X2 having pdfs fX1 and fX2 , this symmetric
Kullback-Leibler divergence is defined by

K(X1, X2) = K(X1||X2) +K(X2||X1), (3)

with K(Xi||Xj) =

∫
R
fXi(x) log

fXi(x)

fXj (x)
dx, i, j = 1, 2.

For Generalized Gaussian distributions, the Kullback-Leibler di-
vergence is given in [1]. We have that the symmetric version this
divergence is:

K(X1, X2)=
(
α1
α2

)β2 Γ
(

1+β2
β1

)
Γ(1/β1)

+
(
α2
α1

)β1 Γ
(

1+β1
β2

)
Γ(1/β2)

− β1+β2
β1β2

.

For Weibull distributions, the Kullback-Leibler divergence is given
in [2]. We have that the symmetric version of this divergence is

K(X1, X2)=Γ
(

1 + k2
k1

)(
λ1
λ2

)k2
+ Γ

(
1 + k1

k2

)(
λ2
λ1

)k1
+(k1 − k2) log λ1

λ2
+ e( k1

k2
+ k2

k1
− 2)− 2.

where e is the Euler-Mascheroni constant.
Tables 3 and 4 provide the average retrieval rates when the GG

and WBL modeling are concerned, respectively. Table 5 provides a
summarized point of vue of results given in 3 and 4. These results
highlight that the analysis performed in terms of relevant wavelet
and best probability distribution family leads to more relevant CBIR
strategy: WBL based modeling of the “Symlet 8” SWT subbands
is with the highest CBIR performance. Finally, for comparison pur-
pose, we have that: in the same context (same database and same
experimental setup) but when the transform used is the dual-tree
complex wavelet transform, CBIR experiments yield 74.12 % (resp.
81.58 %) of cumulative retrieval rate when stochastic modeling is
performed by using the GG (resp. WBL) distribution family [2].

5. CONCLUSION

The paper has addressed content-based image retrieval from texture
databases, by using stochastic modeling in the wavelet domain. It
has proposed an analysis of the main parameters involved in this
content-based image retrieval. These parameters are the wavelet or-
der and the goodness-of-fit measure used for selecting the best fam-
ily of distribution models. Higher order wavelets are shown to be

Table 4. WBL based texture-specific retrieval from the VisTeX database.
Texture “Haar” “Symlet 8”
Bark.00 66.80 66.80
Bark.06 72.27 67.97
Bark.08 61.72 64.45
Bark.09 34.77 41.02
Bric.01 98.44 100
Bric.04 86.72 88.67
Bric.05 82.42 86.72
Buil.09 100 95.31
Fabr.00 98.83 86.33
Fabr.04 69.53 85.55
Fabr.07 90.23 96.48
Fabr.09 98.44 100
Fabr.11 87.89 83.59
Fabr.14 100 100
Fabr.15 83.98 93.36
Fabr.17 100 99.61
Fabr.18 98.44 98.83
Flow.05 72.66 78.52
Food.00 92.97 94.14
Food.05 66.41 64.45

Texture “Haar” “Symlet 8”
Food.08 57.81 99.61
Grass.01 78.13 94.14
Leav.08 67.97 73.44
Leav.10 63.28 62.5
Leav.11 62.5 65.63
Leav.12 83.98 80.47
Leav.16 50.39 64.84
Meta.00 82.03 85.55
Meta.02 97.66 100
Misc.02 95.31 98.05
Sand.00 94.14 94.14
Ston.01 55.47 75.39
Ston.04 92.97 93.75
Terr.10 47.27 55.86
Tile.01 68.75 60.16
Tile.04 83.2 98.83
Tile.07 100 97.27
Wate.05 100 100
Wood.01 57.81 60.55
Wood.02 100 100

Table 5. Comparison chart (mean values) that summerizes the results given
in Table 3 (GG) and those given in Table 4 (WBL).

GG WBL
“Haar” “Symlet 8”
76.52 83.44

“Haar” “Symlet 8”
80.03 83.80

more relevant in that they allows for a better representation under
the iid criterion. Under this iid criterion, then the mean and max-
imum values of the sequence of all goodness-of-fit measures from
the Kolmogorov parameter are shown to be relevant criteria for the
selection of the best family of distribution models. Further prospects
could concern 1) modeling the approximation subband in order to
increase performance, 2) selecting the optimal decomposition level
depending on the database, 3) selecting the best decomposition tree
when the SWPT decomposition is concerned and/or 4) information
fusion from several decompositions.

6. REFERENCES

[1] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using gen-
eralized gaussian density and kullback-leibler distance,” IEEE Trans-
actions on Image Processing, vol. 11, no. 2, pp. 146 – 158, Feb. 2002.

[2] R. Kwitt and A. Uhl, “Image similarity measurement by kullback-
leibler divergences between complex wavelet subband statistics for tex-
ture retrieval,” IEEE International Conference on Image Processing,
ICIP, San Diego, California, USA, 12-15 October, pp. 933–936, 2008.

[3] Y. Stitou, N. Lasmar, and Y. Berthoumieu, “Copulas based multivariate
gamma modeling for texture classification,” IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP, Las Ve-
gas, Nevada, USA, 19 - 24 April, pp. 1045 – 1048, 2009.

[4] N. Lasmar and Y. Berthoumieu, “Multivariate statistical modeling for
texture analysis using wavelet transforms,” IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP, Dallas,
Texas, USA, 14 - 19 March, 2010.

[5] A. M. Atto and D. Pastor, “Central limit theorems for wavelet packet
decompositions of stationary random processes,” IEEE Transactions on
Signal Processing, vol. 58, no. 2, pp. 896 – 901, Feb. 2010.

[6] A. M. Atto, D. Pastor, and A. Isar, “On the statistical decorrelation of
the wavelet packet coefficients of a band-limited wide-sense stationary
random process,” Signal Processing, vol. 87, no. 10, pp. 2320 – 2335,
Oct. 2007.



[7] J. Zhang and G. Walter, “A wavelet-based KL-like expansion for wide-
sense stationary random processes,” IEEE Transactions on Signal Pro-
cessing, vol. 42, no. 7, pp. 1737–1745, July 1994.

[8] A. M. Atto, D. Pastor, and G. Mercier, “Wavelet packets of fractional
brownian motion: Asymptotic analysis and spectrum estimation,” IEEE
Transactions on Information Theory, vol. 56, no. 9, Sep. 2010.

[9] P. F. Craigmile and D. B. Percival, “Asymptotic decorrelation of
between-scale wavelet coefficients,” IEEE Transactions on Information
Theory, vol. 51, no. 3, pp. 1039 – 1048, Mar. 2005.

[10] T. Kato and E. Masry, “On the spectral density of the wavelet trans-
form of fractional brownian motion,” Journal of Time Series Analysis,
vol. 20, no. 50, pp. 559–563, 1999.

[11] E. Masry, “The wavelet transform of stochastic processes with station-
ary increments and its application to fractional brownian motion,” IEEE
Transactions on Information Theory, vol. 39, no. 1, pp. 260–264, Jan.
1993.

[12] P. Flandrin, “Wavelet analysis and synthesis of fractional brownian mo-
tion,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp.
910–917, Mar. 1992.

[13] R. R. Coifman and D. L. Donoho, Translation invariant de-noising.
Lecture Notes in Statistics, 1995, no. 103, pp. 125–150.

[14] J. F. J. Massey, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American Statistical Association, vol. 253, no. 2, pp.
68 – 78, Mar. 1951.

[15] J. F. Kenney and E. S. Keeping, Mathematics of Statistics, Pt. 2, Prince-
ton, Ed. Van Nostrand, 1951.

[16] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain
“goodness-of-fit” criteria based on stochastic processes,” Annals of
Mathematical Statistics, vol. 23, pp. 193 – 212, 1952.


