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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION

1 Introduction to mathematical optimization
1.1 Definitions - Notations
min f(x) 1
XES ( )
where
S=xeX|gix)<0:i=1,...,m; hy(x)=0:k=1,...,m'}
X CR"
f, gi, hx : X — R4
--» Objective or Cost function : f.
~ Scalar objective |/ Scalar optimization, function f: D C X — R.
~+ Vector objective | Vector optimization, function f : D C X — R™, m > 1. Imposes redefining the concept of
optimization since several definitions of optimal points are possible (several possibilities for R™ ordering).
--» Munwmazation | Mazimization problems are ‘equivalent’ in the sense that function f satisfies
min f(x) = — max{—f(x)}.
XES XES
--+ Set of feasible solutions / Feasible set / Constraint set, S.
--» Global minvmum | Minimum at x*: f(x*) < f(x) for every x € S.
--+ Local minimum at x°: f(x°) < f(x) for every x € S N V(x°), where V(x°) is a neighborhood of x°.
--» Unconstrained /| free problem, when 8 coincides with the domain (open set) D of f, or when S is an open subset of D;
constrained otherwise.
--» Inconsistent problem: no feasible solution exists due to inconsistent constraints (example of 5 —x < O and x — 1 < 0).
--» Level set: {x € X : f(x) = C}, where C is a constant.
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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.2 Set and function properties

1.2 Set and function properties

--» Convex sets / non-convex sets.
Let a,b € R" and A € R.

Define the closed line segment [a, b] as:

[a,b]l={x e R"|x=Aa+ (1T —A)b, 0 <ALIL

The open line segment ]a, b is defined similarly by:

Jla,bl={x € R"|[x=Aa+ (1 —A)b, O<A<1}

The set X is convex if it contains the closed line segment joining every two points a,b € X.

--» Convex objective functions / non-convex objective.

A function f: X C R®™ — R, where X is a convex set, is said to be convex on X if:
f(Aa + (1 —A)b) < Af(a) + (1 — A)f(b)

for every a,b € X and every A € [0, 1]. A particular case of non-convex function: if —f is convex on X, then f is said to
be concave on X.

--» Convexity preservation / adding to f, a convex function, multiplying f by a scalar, composition of f with a linear function.

--» Convexity and minimisation / if f and & are convex, then the set of solutions of Eq. is convex. This implies no local
minima in S.

--» Strict convexity and minimisation / at most one minimiser of f in & when & is convex and f is strctly convex.

non-convex objective.
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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.2 Set and function properties

--» Smooth objective / non-smooth-optimization-problem.
Smoothness of the optimization problem relates to the differentiability of f. In particular, for a function f : X — R

being C?(X) on the open convex set X C R", the gradient and the Hessian of f are useful for quantities for solving
optimization problems.

The Gradient vector of f at a € X is given by

of(a) 9f(a of(a)\"
Vi(a) = ( ( ), ( ),..., ( )> , with(x € X) f(x) —f(a) = (x — a)'Vf(a) + o(|/[x — al|).
oaq o oan
The Hessian matrix Hf(a) of f at a € R™ is the n X n matrix:
0%f(a)  9%f(a) 02f(a)
das da;da; °°° da;dan 1
Vf(a) = | | | . with f(x)—f(a) = (x—a)'Vf(a)+=(x—a)'V*f(a)(x—a)+o(|[x—al?).
02f(a)  9%f(a) 02f(a) 2
da,da; 0da,dar 7 da2
--+ Smooth and convex function over a Convex set

When f is differentiable on the open convex set X C R", then f is convex on X if and only if its gradient is a monotone
map on X, 1.€.
(a—b)'[Vf(a) — VFf(b)] > 0.

Let f: X — R be CS(X) on the open convex set X C R". Function f is convex on X if and only if its Hessian matrix
Hf(x) is semidefinite positive on X, 7.e.
x'Hf(x)]x >0 VxeX

(in practice, this is equivalent to the non-negativity for the determinants of submatrices of Hf(x), or equivalently, the
non-negativity for the eigenvalues of Hf(x)).

Specific points in optimization problems
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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.2 Set and function properties

--» Critical point, x such that Vf(x) is not well-defined.
--+ Stationary point, x such that Vf(x) = 0.

--» Saddle point, stationary point but not a local extremum.

Saddle point of function z = x* — y?.

At x° = 0, we have:
f has a minimum with respect to x-axis,
f has a maximum with respect to y-axis.

Problem: ming f(x),

f(x) =x1 — 2| + |x2 — 2],

S={xIx €R*gi(x) <0; hy(x) =0}
g1(x) = (x2)* — %

hi(x) = (x1)? + (x2)* — 1

Feasible set: within parabola,
Level sets: dashed lines,

Solution: x* = (%, %)

hl(x)ﬂ)\
If we remove hy, solution is x* = (2, \/2) _

£k €0

If we remove g; and hy, solution is x* = (2, 2). -2{’

Figure 1: Example of objective functions and some stationary points.
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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.3 Mathematical optimization problems

1.3 Mathematical optimization problems

--» Lanear programmang problem : all the functions involved in Eq. are linear.
--» Non-Linear programming problem : Eq. involves at least one non-linear function.

— Standard optimization problem, X is an open subset of R™ and there are no inequality.
— Convex programming problem f and g; are convex functions, all hy are linear functions.
— Quadratic programming problem, f is a quadratic form and the constraints are linear

—» Separable programming problem, f and g; and hy are separable functions
n n n
fx) =) filx),  gix) =) gij(x),  h(x) =) hyx)).
j=1 j=T1 j=T1

— PFractional or hyperbolic programming problem,

--» Issues raised by Mathematical optimaization problems :

— Smoothness (differentiability) property of f;
— Optimality conditions / existennce of solutions for Eq. ;
— Effective methods for finding solutions of Eq. ().

--» Specific formulations of optimization problems:

— Stochastic programmaing problem (involves random variables) ;

— Integer programmaing problem (some components x € & must be integers, for instance in image processing, man-
agement science or operational research) ;

— Dynamaic optimization problem (time variation, for instance in control theory and calculus of variations).
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2 LINEAR PROGRAMMING PROBLEM [ALL FUNCTIONS INVOLVED IN EQ. (??) ARE LINEAR]

2 Linear programming problem [all functions involved in Eq. (1)) are linear]
f(x) = c'x
for some ¢ € R" and, for some A € R™ X R"™ and b € R™, the inequality constraints have the form:
Ax <b
--» f is a linear function, thus f is a convex function over R™.
--» X ={x € R",Ax < b} is a convex set (polyhedron, polytope).

--» If the linear optimization problem is consistent and the optimal value is finite (bounded problem), then the problem
admits a solution (there may exist several solutions) on a corner (vertex) [sommet| of the polyhedron.

--» For R™ polyhedrons, vertices occur at points where n constraints intersect.

--» Finding where n constraints intersect relates solving a system of n equations (Gauss-Seidel, Jacobi, QR decomposition,
Cholesky factorization, etc.). Finding vertices then involves solving a series of systems of n equations.

Multiple
Optimal
Solutiens!
Maximize: X —Y;
Subject to: %x +y <4,
—x +y < 2,
0 <x <3,
y >0

Figure 2: Simplex algorithm moves adaptively from vertex to vertex until an optimal solution has been found. Each vertex that it visits is an
improvement over the previous one. Once it can’t find a better vertex, it decides that an optimal solution has been reached.
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8 NON-LINEAR PROGRAMMING PROBLEM

3 Non-Linear programming problem

3.1 Non-linear optimization: Standard optimization problems

[X is an open subset of R™ and there are no inequality constraints|

3.1.1 Optimization with no constraints
We assume that f : X — R is C#(X) on the open convex set X C R™. Let x* be a solution of Eq. (1)), f(x*) = min g~ f(x).
Optimality conditions

Theorem 1 (Necessary condition of 1** order)
If x* 1s a local minimum of f on IR"™, then Vf(x*) =0 [x* is thus a critical point].

(Nota: null gradient does not imply a local minimum, examples of saddle points).

Theorem 2 (Necessary condition of 2! order)
If x* 18 a local minimum of f on IR", then V{(x*) =0 and

y'viH(x* )y >0 vy e R"

[ x* is thus a critical point having positive semi-definite Hessian matriz V*f(x*)]/.

Theorem 3 (Sufficient condition of 2"¢ order)
Let x* € R". If
VEx*)=0 and y'V(x*)y>0 Vy e R" [positive definite Hessian]

then x* is the minimum of f on IR".
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8 NON-LINEAR PROGRAMMING PROBLEM 3.1 Non-linear optimization: Standard optimization problems

Gradient descent

Principle: generating a series (x*)x such that (f(x*)), is decreasing, with

K
KT — k4 akgk
[d¥ is the descent direction : d*¥ = —Vf(x*) and the descent step A¥ is positive].

--» d € R" is a descent direction of f in x € R"™ iff f(x + Ad) < f(x) for every small value A > 0, thus iff d*Vf(x) < 0. The
descent direction reduces to d* = —Vf(x¥);
X = xk — ARV f(x¥).

Algorithm of the gradient descent
1. Initializing : x* =x° € R" (k = 0).
2. Computing the gradient descent direction d* = —Vf(x¥).
3. Convergence test: If ||[VF(x*)|| = 0, stop (critical point x*). Else, continue:
4. Selecting / Computing step A¥
5. x¥ « x* + Akd¥; k « k + 1; return to item 2.
Remark [Selection of the steps]
--» Constant step: A¥ = A : guaranty neither descent, nor convergence.
--» Linear search of the step: A¥ = arg min, f(x* — A¥Vf(x*)), convergent, but non-realistic in many cases (non-linearity).

--+ Decreasing sequence of steps:
liInk—)oo Zk }\k = &0
lim o0 3 (A%)? < 00

--» Adaptive steps ...
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8 NON-LINEAR PROGRAMMING PROBLEM 3.1 Non-linear optimization: Standard optimization problems

3.1.2 Optimization with equality constraints
Function f: R" — R and & C R" involves m equality constraints:

S={x € R"/ly(x) =k, 1 <j <m},
where h; : R" — R, with h; differentiable and k; constant. Let x* be a solution:

f(x*) = min f(x), hi(x*)=k;, 1T<j<m
XES

Lagrange multiplier for one equality constraint
We consider hereafter a single constraint having the form & = {x € R" /h(x) = k}, with f,h € C'(S).

Theorem 4 (First order Lagrange necessary condition)
If x* 1s a stationary point of f on S and if Vh(x*) 0, then the gradient of f and the gradient of h are colinear:

A € R/ VE(x*) = AyVh(x*) (2)

The Lagrange method consists in introducing a new variable A called a Lagrange multiplier and study the Lagrange function
(or Lagrangian) defined by
L(x,A) = f(x) + A(h(x) — k),

given that: if f(x*) s a minimum of the original constrained problem, then there exists Ay such that (x*,Ag) is
a stationary point for the Lagrange function L.

Remarks :

1. A stationary point is not necessarily an extremum. A study of the solutions of Eq. in order to check for minimality
of fon S.

2. The Lagrange multiplier A represents the rate of variation of the critical value f(x*(k)) over the constraint h(x) = k
when Kk varies.
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8 NON-LINEAR PROGRAMMING PROBLEM 3.1 Non-linear optimization: Standard optimization problems

Lagrange multipliers for m equality constraints
Consider m equality constraints expressed as S = {x € R" /h;(x) = k;}.

Theorem 5 (First order Lagrange necessary condition)
If x* 1is a local minimum of f on & and if {Vh;(x*) : 1 < j < m} is a linearly independent set, then there exist (A;);
such that:

(x*) = > A Vhy(x*) (3)
=

Coefficients (Aj); are called Lagrange multipliers associated with extremum Xx*.

Procedure 1 (Solution search by using Lagrange Multipliers)

1. Provide the following system associated with (n + m) variables (Xi)i<i<n, (Aj)1<j<m and (M +m) equations:

( of(x) Ohy ( Ohm(x)
ox; M 1 + ot Am 0x1
a.f(.x.) _ ah Ohm (x)
X oxn A 1 _|_ o+ Am 0xn
hi(x) = kq

2. Search stationary points of this system,

3. Look for minimum on & among these stationary points.
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8 NON-LINEAR PROGRAMMING PROBLEM 3.2 Non-linear optimization: Convex programmang problem

3.2 Non-linear optimization: Convex programming problem

[f and g; are convex functions, all hy are linear functions] (we assume no equality constraint first)
Given a set & C R" associated with m equality constraints:

§={x€R"/gj(x) <0, 1<j<mj
and f,g € C'(8), a solution x* of the optimization problem of Eq.(1) is such that:

xX€

Definition 1 (Regularity conditions (Constraints qualifications))
Let xo € S and 1(xg) the set of indices of constraints such that xo satisfy:

I(x0) ={1 <j < m/gj(x0) = 0}
Constraints are said to be qualified at point Xg if:
e either all functions gj, j € I(xo), are affines,
e or there exist w € R" /Vj € I(x0):

Vgj(x)'w < 0,
Vgj(xo)'w < 0 if g; is not affine.
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8 NON-LINEAR PROGRAMMING PROBLEM 3.2 Non-linear optimization: Convex programmang problem

Theorem 6 (Necessary Kuhn-Tucker conditions)
If x* 15 a local minimum of f on & and if the constraints are qualified at x*, then there exist coefficients Aj, j € I(x*)

such that:
VE(x*)+ Y AVgi(x*) =0 and A; >0, j € I(x*) (4)
JEI(x*)
Conditions expressed in Eq are called Kuhn and Tucker conditions.
Remarks:
1. Given a local minimum x*, coefficients A;, j € I(x*) are not necessarily unique, provided if gradients Vg;(x*), j € I(x*)

are linearly independants.

2. If I(x*) = @, Kuhn-Tucker conditions reduce to Vf(x*) = 0, (standard necessary condition for extremum over an open
set and x* given in the interior of S).
3. By letting A; =0, j € I(x*), we obtain:
( m
VE(x*) + ) AVg;(x*) =0,
=1 -
Aj>0,1<j<m, ) Ajg(x*) =0,

j=T1
([ gj(x*) 20,1 <j<m.

Procedure 2 (Optimisation under inequality constraint)

1. Identify the stationary points strictly pertaining to the S (pertaining to the interior of S):
x*/ g(x*) <0 et VFf(x™) = 0;

2. Identify the stationary points on the frontier of S (g(x) = 0) by using Lagrange multiplier method (Procedure (1)),

3. Bvaluate f at stationary points and deduce the global minimum.
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8 NON-LINEAR PROGRAMMING PROBLEM 3.8 Non-linear optimization: Quadratic programmang problem

3.3 Non-linear optimization: Quadratic programming problem

f is a quadratic form and the constraints are linear

3.4 Non-linear optimization: Separable programming problem

f and g; and hy are separable functions

3.5 Non-linear optimization: fractional or hyperbolic programming problem

f(x) = ;%
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