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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION

1 Introduction to mathematical optimization

1.1 Definitions - Notations

min
x∈S

f(x) (1)

where 
S = {x ∈ X | gi(x) 6 0 : i = 1, . . . ,m; hk(x) = 0 : k = 1, . . . ,m ′}

X ⊂ Rn
f, gi, hk : X → Rq

99K Objective or Cost function : f.

 Scalar objective / Scalar optimization , function f : D ⊂ X → R.
 Vector objective / Vector optimization , function f : D ⊂ X → Rm, m > 1. Imposes rede�ning the concept of

optimization since several de�nitions of optimal points are possible (several possibilities for Rm ordering).

99K Minimization / Maximization problems are `equivalent' in the sense that function f satis�es

min
x∈S

f(x) = −max
x∈S

{−f(x)}.

99K Set of feasible solutions / Feasible set / Constraint set , S.

99K Global minimum / Minimum at x∗: f(x∗) 6 f(x) for every x ∈ S.

99K Local minimum at x◦: f(x◦) 6 f(x) for every x ∈ S ∩ V(x◦), where V(x◦) is a neighborhood of x◦.

99K Unconstrained / free problem , when S coincides with the domain (open set) D of f, or when S is an open subset of D;

constrained otherwise.

99K Inconsistent problem : no feasible solution exists due to inconsistent constraints (example of 5− x 6 0 and x− 1 6 0).

99K Level set : {x ∈ X : f(x) = C}, where C is a constant.

A. M. Atto, E. Trouv�e - Polytech Annecy-Chamb�ery p. 3



1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.2 Set and function properties

1.2 Set and function properties

99K Convex sets / non-convex sets.

Let a, b ∈ Rn and λ ∈ R.

De�ne the closed line segment [a, b] as:

[a, b] = {x ∈ Rn | x = λa+ (1− λ)b, 0 6 λ 6 1}.

The open line segment ]a, b[ is de�ned similarly by:

]a, b[= {x ∈ Rn | x = λa+ (1− λ)b, 0 < λ < 1}.

The set X is convex if it contains the closed line segment joining every two points a, b ∈ X.

99K Convex objective functions / non-convex objective.

A function f : X ⊂ Rn −→ R, where X is a convex set, is said to be convex on X if:

f(λa+ (1− λ)b) 6 λf(a) + (1− λ)f(b)

for every a, b ∈ X and every λ ∈ [0, 1]. A particular case of non-convex function: if −f is convex on X, then f is said to

be concave on X.

99K Convexity preservation / adding to f, a convex function, multiplying f by a scalar, composition of f with a linear function.

99K Convexity and minimisation / if f and S are convex, then the set of solutions of Eq. (1) is convex. This implies no local

minima in S.

99K Strict convexity and minimisation / at most one minimiser of f in S when S is convex and f is strctly convex.

non-convex objective.
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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.2 Set and function properties

99K Smooth objective / non-smooth optimization problem.

Smoothness of the optimization problem relates to the di�erentiability of f. In particular, for a function f : X −→ R
being C2(X) on the open convex set X ⊂ Rn, the gradient and the Hessian of f are useful for quantities for solving

optimization problems.

The Gradient vector of f at a ∈ X is given by

∇f(a) =

(
∂f(a)

∂a1
,
∂f(a)

∂a2
, . . . ,

∂f(a)

∂an

)t
, with(x ∈ X) f(x) − f(a) = (x− a)t∇f(a) + ◦(||x− a||).

The Hessian matrix Hf(a) of f at a ∈ Rn is the n× n matrix:

∇2f(a) =


∂2f(a)

∂a2
1

∂2f(a)

∂a1∂a2
... ∂2f(a)

∂a1∂an

| | |
∂2f(a)

∂an∂a1

∂2f(a)

∂an∂a2
... ∂2f(a)

∂a2
n

 , with f(x)−f(a) = (x−a)t∇f(a)+
1

2
(x−a)t∇2f(a)(x−a)+◦(||x−a||2).

99K Smooth and convex function over a Convex set

When f is di�erentiable on the open convex set X ⊂ Rn, then f is convex on X if and only if its gradient is a monotone

map on X, i.e.

(a− b)t [∇f(a) −∇f(b)] > 0.

Let f : X −→ R be C∈(X ) on the open convex set X ⊂ Rn. Function f is convex on X if and only if its Hessian matrix

Hf(x) is semide�nite positive on X, i.e.

xt [Hf(x)] x > 0 ∀ x ∈ X

(in practice, this is equivalent to the non-negativity for the determinants of submatrices of Hf(x), or equivalently, the

non-negativity for the eigenvalues of Hf(x)).

Specific points in optimization problems

A. M. Atto, E. Trouv�e - Polytech Annecy-Chamb�ery p. 5



1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.2 Set and function properties

99K Critical point, x such that ∇f(x) is not well-de�ned.

99K Stationary point, x such that ∇f(x) = 0.

99K Saddle point, stationary point but not a local extremum.

Saddle point of function z = x2 − y2.

At x◦ = 0, we have:

f has a minimum with respect to x-axis,

f has a maximum with respect to y-axis.

Problem: minS f(x),

f(x) = |x1 − 2| + |x2 − 2|,

S = {x, | x ∈ R2, g1(x) 6 0 ; h1(x) = 0}

g1(x) = (x2)
2 − x1

h1(x) = (x1)
2 + (x2)

2 − 1

Feasible set: within parabola,

Level sets: dashed lines,

Solution: x∗ =
(√

2
2
,
√
2
2

)
.

If we remove h1, solution is x∗ =
(
2,
√
2
)
.

If we remove g1 and h1, solution is x∗ = (2, 2).

Figure 1: Example of objective functions and some stationary points.
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1 INTRODUCTION TO MATHEMATICAL OPTIMIZATION 1.3 Mathematical optimization problems

1.3 Mathematical optimization problems

99K Linear programming problem : all the functions involved in Eq. (1) are linear.

99K Non-Linear programming problem : Eq. (1) involves at least one non-linear function.

� Standard optimization problem, X is an open subset of Rn and there are no inequality.

� Convex programming problem f and gi are convex functions, all hk are linear functions.

� Quadratic programming problem, f is a quadratic form and the constraints are linear

� Separable programming problem, f and gi and hk are separable functions

f(x) =

n∑
j=1

fj(xj), gi(x) =

n∑
j=1

gi,j(xj), hk(x) =

n∑
j=1

hk,j(xj).

� Fractional or hyperbolic programming problem,

f(x) =
u(x)

v(x)
.

99K Issues raised by Mathematical optimization problems :

� Smoothness (di�erentiability) property of f;

� Optimality conditions / existennce of solutions for Eq. (1);

� E�ective methods for �nding solutions of Eq. (1).

99K Specific formulations of optimization problems:

� Stochastic programming problem (involves random variables) ;

� Integer programming problem (some components x ∈ S must be integers, for instance in image processing, man-

agement science or operational research) ;

� Dynamic optimization problem (time variation, for instance in control theory and calculus of variations).
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2 LINEAR PROGRAMMING PROBLEM [ALL FUNCTIONS INVOLVED IN EQ. (??) ARE LINEAR]

2 Linear programming problem [all functions involved in Eq. (1) are linear]

f(x) = ctx

for some c ∈ Rn and, for some A ∈ Rm × Rn and b ∈ Rm, the inequality constraints have the form:

Ax 6 b

99K f is a linear function, thus f is a convex function over Rn.

99K X = {x ∈ Rn, Ax 6 b} is a convex set (polyhedron, polytope).

99K If the linear optimization problem is consistent and the optimal value is �nite (bounded problem), then the problem

admits a solution (there may exist several solutions) on a corner (vertex) [sommet] of the polyhedron.

99K For Rn polyhedrons, vertices occur at points where n constraints intersect.

99K Finding where n constraints intersect relates solving a system of n equations (Gauss-Seidel, Jacobi, QR decomposition,

Cholesky factorization, etc.). Finding vertices then involves solving a series of systems of n equations.

Maximize:

Subject to:

x− y;
1
3
x+ y 6 4,

−x+ y 6 2,
0 6 x 6 3,
y > 0.

Figure 2: Simplex algorithm moves adaptively from vertex to vertex until an optimal solution has been found. Each vertex that it visits is an

improvement over the previous one. Once it can't �nd a better vertex, it decides that an optimal solution has been reached.
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3 NON-LINEAR PROGRAMMING PROBLEM

3 Non-Linear programming problem

3.1 Non-linear optimization: Standard optimization problems

[X is an open subset of Rn and there are no inequality constraints]

3.1.1 Optimization with no constraints

We assume that f : X −→ R is C2(X) on the open convex set X ⊂ Rn. Let x∗ be a solution of Eq. (1), f(x∗) = min
x∈IR

n f(x).

Optimality conditions

Theorem 1 (Necessary condition of 1rst order)

If x∗ is a local minimum of f on IRn, then ∇f(x∗) = 0 [ x∗ is thus a critical point].

(Nota: null gradient does not imply a local minimum, examples of saddle points).

Theorem 2 (Necessary condition of 2nd order)

If x∗ is a local minimum of f on IRn, then ∇f(x∗) = 0 and

yt∇2f(x∗)y ≥ 0 ∀y ∈ IRn

[ x∗ is thus a critical point having positive semi-de�nite Hessian matrix ∇2f(x∗)].

Theorem 3 (Sufficient condition of 2nd order)

Let x∗ ∈ IRn. If

∇f(x∗) = 0 and yt∇2f(x∗)y > 0 ∀y ∈ IRn [positive de�nite Hessian]

then x∗ is the minimum of f on IRn.
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3 NON-LINEAR PROGRAMMING PROBLEM 3.1 Non-linear optimization: Standard optimization problems

Gradient descent

Principle: generating a series (xk)k such that
(
f(xk)

)
k
is decreasing, with

xk+1 = xk + λkdk

[dk is the descent direction : dk = −∇f(xk) and the descent step λk is positive].

99K d ∈ Rn is a descent direction of f in x ∈ Rn i� f(x+ λd) < f(x) for every small value λ > 0, thus i� dt∇f(x) < 0. The
descent direction reduces to dk = −∇f(xk);

xk+1 = xk − λk∇f(xk).

Algorithm of the gradient descent

1. Initializing : xk = x0 ∈ Rn ( k = 0).

2. Computing the gradient descent direction dk = −∇f(xk).

3. Convergence test: If ||∇f(xk)|| ∼= 0, stop (critical point xk). Else, continue:

4. Selecting / Computing step λk

5. xk ← xk + λkdk; k ← k+ 1; return to item 2.

Remark [Selection of the steps]

99K Constant step: λk = λ : guaranty neither descent, nor convergence.

99K Linear search of the step: λk = arg minλ f(x
k − λk∇f(xk)), convergent, but non-realistic in many cases (non-linearity).

99K Decreasing sequence of steps: {
limk→∞∑k λ

k = ∞
limk→∞∑k(λ

k)2 < ∞
99K Adaptive steps . . .
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3 NON-LINEAR PROGRAMMING PROBLEM 3.1 Non-linear optimization: Standard optimization problems

3.1.2 Optimization with equality constraints

Function f : IRn −→ IR and S ⊂ IRn involves m equality constraints:

S = {x ∈ IRn /hj(x) = kj, 1 ≤ j ≤ m},

where hj : IR
n −→ IR, with hj di�erentiable and kj constant. Let x

∗ be a solution:

f(x∗) = min
x∈S

f(x), hj(x
∗) = kj, 1 ≤ j ≤ m

Lagrange multiplier for one equality constraint

We consider hereafter a single constraint having the form S = {x ∈ IRn /h(x) = k}, with f, h ∈ C1(S).

Theorem 4 (First order Lagrange necessary condition)

If x∗ is a stationary point of f on S and if ∇h(x∗) 6= 0, then the gradient of f and the gradient of h are colinear:

∃λ0 ∈ IR /∇f(x∗) = λ0∇h(x∗) (2)

The Lagrange method consists in introducing a new variable λ called a Lagrange multiplier and study the Lagrange function

(or Lagrangian) de�ned by

L(x, λ) = f(x) + λ(h(x) − k),

given that: if f(x∗) is a minimum of the original constrained problem, then there exists λ0 such that (x∗, λ0) is

a stationary point for the Lagrange function L.

Remarks :

1. A stationary point is not necessarily an extremum. A study of the solutions of Eq. (2) in order to check for minimality

of f on S.

2. The Lagrange multiplier λ represents the rate of variation of the critical value f(x∗(k)) over the constraint h(x) = k

when k varies.
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3 NON-LINEAR PROGRAMMING PROBLEM 3.1 Non-linear optimization: Standard optimization problems

Lagrange multipliers for m equality constraints

Consider m equality constraints expressed as S = {x ∈ IRn /hj(x) = kj}.

Theorem 5 (First order Lagrange necessary condition)

If x∗ is a local minimum of f on S and if {∇hj(x∗) : 1 ≤ j ≤ m} is a linearly independent set, then there exist (λj)j
such that:

∇f(x∗) =

m∑
j=1

λj∇hj(x∗) (3)

Coe�cients (λj)j are called Lagrange multipliers associated with extremum x∗.

Procedure 1 (Solution search by using Lagrange Multipliers)

1. Provide the following system associated with (n+m) variables (xi)1≤i≤n, (λj)1≤j≤m and (n+m) equations:

∂f(x)

∂x1
= λ1

∂h1(x)

∂x1
+ ...+ λm

∂hm(x)

∂x1

. . .
∂f(x)

∂xn
= λ1

∂h1(x)

∂xn
+ ...+ λm

∂hm(x)

∂xn

h1(x) = k1
. . .

hm(x) = km

2. Search stationary points of this system,

3. Look for minimum on S among these stationary points.
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3 NON-LINEAR PROGRAMMING PROBLEM 3.2 Non-linear optimization: Convex programming problem

3.2 Non-linear optimization: Convex programming problem

[f and gi are convex functions, all hk are linear functions] (we assume no equality constraint �rst)

Given a set S ⊂ IRn associated with m equality constraints:

S = {x ∈ IRn /gj(x) ≤ 0, 1 ≤ j ≤ m},

and f, g ∈ C1(S), a solution x∗ of the optimization problem of Eq.(1) is such that:

f(x∗) = min
x∈S

f(x), gj(x
∗) ≤ 0, 1 ≤ j ≤ m.

Definition 1 (Regularity conditions (Constraints qualifications))

Let x0 ∈ S and I(x0) the set of indices of constraints such that x0 satisfy:

I(x0) = {1 ≤ j ≤ m/gj(x0) = 0}

Constraints are said to be quali�ed at point x0 if:

� either all functions gj, j ∈ I(x0), are a�nes,

� or there exist w ∈ IRn / ∀j ∈ I(x0):

∇gj(x0)tw ≤ 0,

∇gj(x0)tw < 0 if gj is not a�ne.
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3 NON-LINEAR PROGRAMMING PROBLEM 3.2 Non-linear optimization: Convex programming problem

Theorem 6 (Necessary Kuhn-Tucker conditions)

If x∗ is a local minimum of f on S and if the constraints are quali�ed at x∗, then there exist coe�cients λj, j ∈ I(x∗)
such that:

∇f(x∗) +
∑
j∈I(x∗)

λj∇gj(x∗) = 0 and λj ≥ 0, j ∈ I(x∗) (4)

Conditions expressed in Eq (4) are called Kuhn and Tucker conditions.

Remarks:

1. Given a local minimum x∗, coe�cients λj, j ∈ I(x∗) are not necessarily unique, provided if gradients ∇gj(x∗), j ∈ I(x∗)
are linearly independants.

2. If I(x∗) = ∅, Kuhn-Tucker conditions reduce to ∇f(x∗) = 0, (standard necessary condition for extremum over an open

set and x∗ given in the interior of S).

3. By letting λj = 0, j /∈ I(x∗), we obtain:

∇f(x∗) +
m∑
j=1

λj∇gj(x∗) = 0,

λj ≥ 0, 1 ≤ j ≤ m,
m∑
j=1

λjgj(x
∗) = 0,

gj(x
∗) ≥ 0, 1 ≤ j ≤ m.

Procedure 2 (Optimisation under inequality constraint)

1. Identify the stationary points strictly pertaining to the S (pertaining to the interior of S):

x∗ / g(x∗) < 0 et ∇f(x∗) = 0;

2. Identify the stationary points on the frontier of S (g(x) = 0) by using Lagrange multiplier method (Procedure 1),

3. Evaluate f at stationary points and deduce the global minimum.
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3 NON-LINEAR PROGRAMMING PROBLEM 3.3 Non-linear optimization: Quadratic programming problem

3.3 Non-linear optimization: Quadratic programming problem

f is a quadratic form and the constraints are linear

3.4 Non-linear optimization: Separable programming problem

f and gi and hk are separable functions

f(x) =

n∑
j=1

fj(xj)

gi(x) =

n∑
j=1

gi,j(xj)

hk(x) =

n∑
j=1

hk,j(xj)

3.5 Non-linear optimization: fractional or hyperbolic programming problem

f(x) =
u(x)

v(x)
.
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