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ABSTRACT

Processing large databases is intricate for databases involving se-
veral types of textures. In particular, for content-based image re-
trieval, a query has to be compared with all the samples pertai-
ning to the database in order to identify its content/class and this
is time consuming. Furthermore, modeling of a large database
is a difficult task for databases involving several types of textures
since accurate models for certain textures are not guaranteed to be
very relevant for other types of textures and vice-versa. In order to
save computational time and increase performance in processing
of large texture databases, the present paper proposes structuring
texture databases by using stochasticity metaclasses.

Index Terms— Texture ; Stochasticity ; Regularity ; Stationary Wavelet
Transform ; Similarity Measurements ; Edgeworth expansion ; General-
ized Gaussian Distribution ; Pareto Distribution ; Weibull distribution ;
Content-Based Image Retrieval.

1. INTRODUCTION

Wavelet transforms have proven useful in texture characterization
via stochastic parametric modeling. This is due to the suitable
statistical properties characterizing the wavelet coefficients issued
from the decomposition of stochastic processes: dependency re-
duction occurs among the wavelet coefficients (see [1], [2], among
others) and makes relevant, the use of statistical modeling un-
der independence assumption on the wavelet subbands (see the
overview given in [3]).

The present paper addresses structuring of texture databases
with respect to stochasticity measurements in the wavelet domain.
Structuring a database consists in identifying texture classes (me-
taclass, structure) that are likely to be accurately described by sto-
chastic models, due to their randomness-like behavior in the wa-
velet domain. In this respect, searching a stochastic texture will be
restricted to its associated metaclass and is expected to yield good
retrieval performance. Experimental results concerning Content
Based Image Retrieval, CBIR, show that stochasticity pre-conside-
ration is relevant for the post-processings of large texture databases
containing both deterministic and stochastic type textures.

Specifically, almost all deterministic textures are those textures
that are geometrically regular in the sense of [4] and, consequently,
we will use the terminology of regular textures to denote textures
that are far from being stochastic in the wavelet domain.

2. METHOD DESCRIPTION

Let T be a texture database. We consider the problem of structur-
ing the elements of T by using low-level texture features. From

the literature, low-level features that have proven relevancy in tex-
ture analysis are coarseness, roughness, regularity, directionality
and contrast.

The effect of directionality is fixed in the approach proposed
hereafter in the sense that similarity measurements between fea-
tures concern oriented and multi-scale wavelet subbands. In ad-
dition, contrast calibration is addressed by simply imposing the
same mean value for all the subimages of a given texture class.

Coarseness and roughness are intrinsic to stochastic-type tex-
tures and can be captured through stochastic modeling. It is worth
noticing that in texture images, many non-stochastic (or deter-
ministic) patterns consist in smooth objects, while smoothness re-
lates to regularity. Thus, when stochasticity holds true, regularity
trivially fails. In this respect, we consider structuring the database
in terms of metaclasses depending on the stochasticity degree. For
the sake of simplifying the presentation, we will consider the split-
ting of database T in two metaclasses: stochastic versus regular
textures.

Let x be a dataset having N -samples that are realization of
some independent and identically distributed, iid, random vari-
ables with probability distribution function F . The Kolmogorov
stochasticity index of x is [5]:

κ (x,F ) = sup
t

|Fx (t )−F (t )| , (1)

where Fx is the empirical cumulative distribution function of x.
In testing random generators, admissible indices consist in values
of κ (x,F ) that are almost certain, provided that the sample size N
tends to infinity. The Kolmogorov distribution, derived from the
asymptotic of the random variable

p
N×κ (x,F ) is commonly used

to fix these admissible indices. From the Kolmogorov distribution,
the admissible indices can be chosen as those κ satisfying

0.3p
N

É κ (x,F ) É 2.4p
N

.

For a natural image (quantified pixel values with fixed dynam-
ical range and finite sample size), κ (x,F ) is not expected to de-
crease significantly when the sample size increases. In order to as-
sess the intrinsic stochasticity of the texture, we derive a bound on
κ (x,F ) from a mean squared error consideration in the problem
of fitting Fx (t ) by F (t ). This is performed by considering κ (x,F ) as
an estimation (`∞) error and the admissible indices are those sat-

isfying κ
(
c j ,n ,F

)
< η0, where η0 is chosen so as to guarantee an

appropriate PSNR. This leads, if we consider PSNRs greater than
35 dBs (good quality in image denoising and compression prob-

lems), to η0 =
p

10−3.5.
The second constraint imposed by the measure κ (x,F ) is the

iid nature of the data. In order to approximately attain this con-
dition, measurements are performed in the wavelet domain. In-



deed, wavelet based transforms have appreciable statistical prop-
erties such as stationarization, decorrelation and higher order de-
pendency reduction for many random processes (see [1], [2], am-
ong others). These properties are obtained with respect to some
key parameters that are: the shape of the polyspectra of the input
random process, the wavelet order and the wavelet decomposi-
tion level (see the above references for more details). Furthermore,
from these statistical properties, we can:

(1) restrict F to pertain to the class of distributions having prob-
ability density functions with exponential decay, since main-
ly distributions among this class are relevant for modeling
the wavelet subbands.

(2) select the Symlet wavelet of order 8 as a relevant wavelet for
the above statistical properties to be substantial.

The sequence of wavelet subband stochasticity measurements will
then describes the stochasticity behavior of the input texture. Reg-
ular textures are such that there exists at least one detail wavelet
subband with large stochasticity index.

It is worth mentioning that full wavelet packets yield better
statistical representations in terms of the iid condition. In addi-
tion, shift-invariance is often desirable in signal and image rep-
resentations when analysis is concerned. In particular, this shift-
invariance makes the Stationary Wavelet Transform (SWT) and its
wavelet packet version more relevant in texture analysis. However,
due to the computational complexity of the stationary wavelet pac-
kets, we use the SWT in the following. The sole consequence of
this alternative is that the class of stochastic textures is slightly re-
duced, which has no consequence on the method.

Figure 1 provides an illustration of some VisTeX1 texture data-
base structuring obtained in terms of stochastic versus regular tex-
tures. The detail subbands are considered in these experiments.
Stochasticity is measured with respect to a dictionary composed of
continuous cumulative distribution functions, among which the
Generalized Gaussian and the Weibull distributions play an im-
portant role. The experimental results presented in Section 4 show
that such a structuring is useful in CBIR. Before presenting these
results, the following Section fixes the statistical tools used for the
description of texture features.

3. PARAMETRIC MODELING AND SIMILARITY
MEASUREMENTS

In this section, we address the SWT subband modeling and simi-
larity measurements. It is worth highlighting that both stochastic
and regular will be concerned by parametric modeling by using
probability distribution functions. This issue is natural for stochas-
tic textures. For regular textures, this issue is motivated by the
following fact: the parametric models under consideration act as
bests approximations of the sparse sequences of random variables
representing the coefficients of these textures. Thus, these para-
metric models are expected to yield reasonable performance for
regular images in CBIR, while the parametric modeling is expected
to yield high CBIR performance for the class of stochastic textures.

3.1. Parametric modeling of the SWT subband coefficients

The SWT approximation coefficients have specific behavior be-
cause these coefficients are associated with a scaling function hav-
ing no-vanishing moment. This is why approximation coefficients

1MIT Vision Texture database, available at http://vismod.www.
media.mit.edu.

Stochastic textures from SWT based stochasticity

“Fabric.07” “Fabric.04” “Fabric.11”

Regular textures from SWT based stochasticity

“Fabric.09” “Fabric.00” “Fabric.14”

Fig. 1. Database structuring in terms of stochastic versus regu-
lar textures. Stochasticity is measured in the SWT domain and
concerns detail subbands, up to decomposition level J = 4. Tex-
ture images considered are the “Fabrics” textures from the VisTeX
database.

are usually not considered when parametric modeling of wavelet
coefficients is of interest (see [3], [6], [7], [8] and [9]). In the follow-
ing, we propose the use of Edgeworth expansions of order 4 for
modeling the SWT approximation subbands.

When considering an Edgeworth expansion with order 4, we
can capture the variance, skewness and kurtuosis similarity infor-
mation between SWT approximations. The Edgeworth expansion
of order p for a random variable X , absolutely continuous, with
mean µ and standard deviation σ is given by:

fp (x) = 1p
2πσ

(
p∑

r=0
ηr Hr (x)

)
e
− (x−µ)2

2σ2 , (2)

where Hr is the Chebyshev-Hermite polynomial of order r [10]
and the coefficient ηr is a function of the r firsts cumulants of X .
When p =∞, the right hand side expression of the above equation
is exactly the probability density function of X , under regularity
assumptions on this function [11].

For modeling the SWT detail coefficients, we need to highlight
the following facts: in the detail wavelet domain, stochastic pro-
cesses tend to yield distributions that are regular with respect to
the Gaussian distribution (see the literature on the wavelet trans-
forms of stochastic processes, among which references [1] and [2]
concern central limit theorems for wavelet decompositions). In
contrast, geometrically regular functions tend to yield sparse dis-
tributions in the detail wavelet domain [12], and significant coef-
ficients are those with large amplitudes (extremes). These proper-
ties suggest using:

• distributions that are regular with respect to the Gaussian
distributions, such as the Generalized Gaussian densities,
for approximating the distributions of stochastic textures.

• heavy tailed distributions that make possible a good fit to
extremes of the sparse coefficients issued from the wavelet
decomposition of regular textures.

Furthermore, when dealing with the whole database, we need the
availability of a family of distribution functions that will realize a



kind of compromise in terms of heavy tails and regularity with re-
spect to the Gaussian distributions. The Weibull distributions are
such a family.

With respect to the above considerations, modeling the detail
wavelet coefficients will be addressed by using Generalized Gaus-
sian, Pareto and Weibull distributions (model validation is omitted
in this short paper and the reader is asked to refer to [3] concern-
ing how to perform model validation in CBIR experiments).

The Generalized Gaussian, GG, distribution with scale α > 0
and shape β> 0 is defined by:

fα,β(x) = β

2αΓ(1/β)
e−( |x|α )β , (3)

for every real value x, where Γ is the standard Gamma function

given for z > 0 by Γ(z) =
∫ ∞

0
e−t t z−1dt .

The Pareto (λ,1)-family, PRT, with distributions indexed by a
shape parameter λ> 0 is given for x Ê 0 by:

fλ(x) =λ (1+x)−λ−1 . (4)

The Weibull, WBL, distribution with scale a > 0 and shape b >
0 is defined for x > 0 by:

fa,b (x) = b

a

( x

a

)b−1
e−( x

a )b
. (5)

3.2. Similarity measurements between parametric models

We use as similarity measure between two random variables X1
and X2 having probability distribution functions fX1 and fX2 , the
symmetric Kullback-Leibler divergence defined by:

K (X1, X2) =K (X1||X2)+K (X2||X1), (6)

with K (Xi ||X j ) =
∫
R

fXi (x) log
fXi (x)

fX j (x)
d x, i , j = 1,2.

Let κp [Xi ] denotes the p-th cumulant of the random variable
Xi . From [13], the Kullback-Leibler divergence between X1 and
X2 can be approximated by:

K (X1||X2) ≈ 1

12

κ2
3[X1]

κ2
2[X1]

+ 1

2

(
β2 −2logβ−1+α2

)
+ (b1 +b2 +b3)

+ 1

36

κ3[X1]κ3[X2]

κ2
2[X2]

(
1

κ2[X2]
−α2 +9κ2[X2]

)
with:

α= 1√
κ2[X2]

(κ1[X1]−κ1[X2]) , β=
√
κ2[X1]

κ2[X2]
,

and

b1 = κ2
3[X2]

6κ3
2[X2]

(
β3

(
α3 +3α

)
−3β

)
,

b2 = κ4[X2]

24κ2
2[X2]

(
β4

(
α4 +6α2 +3

)
−6β2

(
α2 +1

)
+3

)
,

b3 = κ2
3[X2]κ3

2[X2]

72κ3
2[X2]

(
β6

(
α6 +15α4 +45α2 +15

)
−15β4

(
α4 +6α2 +3

)
+45β2

(
α2 +1

)
−15

)
.

For the GG distributions, the Kullback-Leibler divergence is
given in [7]:

K (X1||X2) = log

(
β1

β2

α2

α1

Γ(1/β2)

Γ(1/β1)

)
+

(
α1

α2

)β2 Γ
(

1+β2
β1

)
Γ(1/β1)

− 1

β1
. (7)

Since we consider the symmetric version of the Kullback-Leibler
divergence, we have from Eqs. (6) and (7) that:

K (X1, X2) =
(
α1

α2

)β2 Γ
(

1+β2
β1

)
Γ(1/β1)

+
(
α2

α1

)β1 Γ
(

1+β1
β2

)
Γ(1/β2)

− β1 +β2

β1β2
. (8)

For PRT distributions, the Kullback-Leibler divergence is given
in [14]. We have that the symmetric version of this divergence is

K (X1, X2) = λ2

λ1
+ λ1

λ2
+ log

λ2

λ1
+ log

λ1

λ2
−2. (9)

For WBL distributions, the Kullback-Leibler divergence is given
in [6]. We have that the symmetric version of this divergence is

K (X1, X2)=Γ
(
1+ k2

k1

)(
λ1

λ2

)k2

+Γ
(
1+ k1

k2

)(
λ2

λ1

)k1

+(k1 −k2) log
λ1

λ2
+ e

(
k1

k2
+ k2

k1
−2

)
−2.

where e is the Euler-Mascheroni constant.
As mentioned above, wavelets tend to distribute many stochas-

tic processes as iid random sequences when the wavelet decom-
position level and filter order are large enough. These statistical
properties make adequate the choice of the following cumulative
similarity measure upon the distribution models associated with
the SWT coefficients:

K (I ,Υ) =K ( fc J ,0 [I ], fc J ,0 [Υ])+ ∑
j∈{1,2...,J }
n∈{1,2,3}

K ( fc j ,n [I ], fc j ,n [Υ]),

where K denotes the symmetric Kullback-Leibler divergence, I
and Υ are two arbitrary textures and fc j ,n [I ], fc j ,n [Υ] are the pdfs
used for modeling the subband ( j ,n) SWT coefficients of I and Υ
respectively.

4. EXPERIMENTAL RESULTS

Experimental tests concern 40 texture classes of the VisTeX data-
base. The database structuring for these classes is given, in terms
of stochastic versus regular textures, in Table 1 (see Section 2 for
details on the structuring method). The structuring yields a stochas-
tic metaclass composed with 22 texture classes and a regular meta-
class composed with 18 texture classes.

Any given texture class is composed with 16 images obtained
by splitting every large texture image in 16 non-overlapping subim-
ages. Summarizing, we have a test database T of 640 images,
among which, 352 images forming a database structure T1 are is-
sued from a stochastic class; whereas the 288 remaining textures
constitute a database structure T2 associated with regular texture
classes, with T =T1 ∪T2.

We then run CBIR from parametric modeling and similarity
measurements, as described in Section 3. Experimental tests are
performed independently on the tree database structures T1,T2,T .
For a given structure, performance measurements concern the re-
trieval rates, when a query is any subimage of the structure under



Table 1. Texture-specific retrieval results for 40 textures in the Vis-
TeX database. Experimental tests are performed separately on the
stochasticity structures. Stochastic texture classes are given in red
whereas regular classes are colored in blue.

Texture
Bark.00
Bark.06
Bark.08
Bark.09
Bric.01
Bric.04
Bric.05
Buil.09
Fabr.00
Fabr.04
Fabr.07
Fabr.09
Fabr.11
Fabr.14
Fabr.15
Fabr.17
Fabr.18
Flow.05
Food.00
Food.05

GG
69.92
85.55
69.53
48.05
98.83
84.77
92.97
76.56
94.92
89.84
98.05

100
92.58

100
92.97
92.58
94.92
68.36

100
81.64

WBL
68.36
85.94
68.36
47.27
98.83
83.20
89.84
97.66
91.80
87.89
98.05

100
92.58

100
92.97
96.09
91.80
66.41

100
81.64

PRT
78.13
64.06
56.64
73.05
76.56
88.28
83.98
88.28
78.13
84.38
75.39
80.47
57.81
89.84
57.03
85.16
47.27
80.86
87.50
72.27

Texture
Food.08
Gras.01
Leav.08
Leav.10
Leav.11
Leav.12
Leav.16
Meta.00
Meta.02
Misc.02
Sand.00
Ston.01
Ston.04
Terr.10
Tile.01
Tile.04
Tile.07
Wate.05
Wood.01
Wood.02

GG
99.61
98.83
82.03
64.84
73.05
98.05
72.27
83.20

100
96.09
96.48
73.83
93.75
63.28
62.11
99.61
99.22

100
61.33

100

WBL
100

98.83
83.20
63.67
72.66
97.27
71.48
82.42

100
95.70
97.66
74.61
92.97
62.50
61.72
99.61
98.83

100
61.33

100

PRT
86.33
53.13
80.86
77.34
87.50
53.91
87.11
59.38
86.33
56.64
51.56
78.13
49.22
88.28
91.41
94.14
83.98
56.25
75.78
67.58

consideration. Retrieval rates per class are given in Table 1 con-
cerning T1 and T2. Average retrieval rates per structures struc-
tures T1,T2,T are given in Table 2 for comparison purpose.

From these experimental results, we can conclude that the re-
trieval is more concise when the search focuses either on T1 or on
T2 than on the whole structure T . Since T1 and T2 have low car-
dinality, the structuring also eases the search. In addition, from
Table 2 and when comparing the role played by the distribution
type on the metaclass, it follows that the more relevant family is:

• the GG family for modeling the stochastic textures,

• the PRT family for modeling the regular textures,

• the WBL family for modeling the whole database contain-
ing both regular and stochastic textures.

The above remarks confirm the suitability of separating a hetero-
geneous database into structures with approximately the same sta-
tistical properties.

Table 2. Average values of texture-specific retrieval for the whole
database T , the database composed of stochastic textures T1 and
the database composed of regular textures T2, with T1 ∪T2 = T .
Experimental results performed without stochastic structuration
(blind approach) are given for comparison purpose.

Stochastic textures (T1)
Blind approach Stochastic structuring

GG WBL PRT GG WBL PRT
88.12 87.82 66.05 90.45 90.02 66.67

Regular textures (T2)
Blind approach Stochastic structuring

GG WBL PRT GG WBL PRT
78.95 79.60 83.18 81.10 81.81 83.51

Whole texture database (T )
Blind approach Stochastic structuring

GG WBL PRT GG WBL PRT
83.99 84.12 73.76 86.24 86.33 74.25

5. CONCLUSION

In this paper, we have first investigated structuring large databases
with respect to stochasticity consideration. The structuring is de-
rived from the Kolmogorov stochasticity parameter applied in the
stationary wavelet domain. This structuring yields stochastic ver-
sus regular texture metaclasses. Then, we have addressed content-
based image retrieval from Edgeworth, Generalized Gaussian, Pareto
and Weibull distributions for modeling the coefficients of the sta-
tionary wavelet transform. Experimental tests highlight the rel-
evancy of the Pareto distribution for modeling the regular meta-
class: Regular textures are sparsely distributed in the wavelet do-
main and the behavior of their large (significant) coefficients can
be captured by using the tail of the Pareto distribution. Concern-
ing the stochastic textures, those textures that have regular distri-
butions with respect to the Gaussian distribution in the wavelet
domain, they tend to be well described by the Generalized Gaus-
sian family. The relevance of data structuring with respect to stochas-
ticity has been emphasized by content-based image retrieval ex-
periments: 1) the computational load on the metaclasses is re-
duced by half to a quarter with respect to that involved for the
whole database and 2) performance are increased by restricting
the search to the appropriate metaclass. Prospects concern refine-
ments of the structuring by setting different stochasticity bounds
on the Kolmogorov parameter.
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