
Wavelet Packet Spectrum [2-D version for this digest]

# Consider a \sympathetic"1 zero-mean second order random �eld X.

# Consider the 2-Dimensional (2-D) Discrete Wavelet Packet Transform (DWPT) associated with a

decomposition level j and a pair of frequency indices (n1, n2) , n.

# Use the Shannon wavelet �lters to compute the DWPT coe�cients of X.

♠ Then, the autocorrelation functions of these coe�cients have the form
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where γ is the spectrum2 of the X (see [1] for details).

F Consider a continuity point ω = (ω1,ω2) of γ. Then, we have

γ(ω) = lim
j→+∞RS

j,nP(j)[0, 0], (2)

where frequency indices (nP(j))j>0 issue from a particular DWPT path P guarantying

ω = lim
j→+∞

G (nP(j))π

2j
(3)

and function G relates to the inverse of the Gray code permutation (see [3], [1] for details).

♠ Since the random �eld is assumed to have zero-mean (remove the mean before decomposing, in practice),

then RS
j,n[0, 0] = var[cj,n] is the variance of the DWPT (j, n)-subband.

♠ Spectrum γ can thus be estimated by computing and ordering conveniently, the variances of Shannon

DWPT coe�cients located at su�ciently large decomposition levels.

♣ Shannon DWPT decomposition is not an easy task (try, and tell me if so . . . ): in practice, use a

Daubechies wavelet with large order (for approximating the \ideal" Shannon case).

Refer to [1], [2], [4], [5] in order to go beyond this brief presentation.

References

[1] A. M. Atto, Y. Berthoumieu, and P. Bolon, \2-dimensional wavelet packet spectrum for texture analysis," IEEE Transactions

on Image Processing, Forthcoming 2012.

[2] A. M. Atto, D. Pastor, and G. Mercier, \Wavelet packets of fractional brownian motion: Asymptotic analysis and spectrum

estimation," IEEE Transactions on Information Theory, vol. 56, no. 9, Sep. 2010.

[3] M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software. AK Peters, 1994.

[4] A. M. Atto, D. Pastor, and A. Isar, \On the statistical decorrelation of the wavelet packet coe�cients of a band-limited

wide-sense stationary random process," Signal Processing, Elsevier, vol. 87, no. 10, pp. 2320 { 2335, Oct. 2007.

[5] D. Pastor and R. Gay, \D�ecomposition d'un processus stationnaire du second ordre: Propri�et�es statistiques d'ordre 2 des

coe�cients d'ondelettes et localisation frequentielle des paquets d'ondelettes," Traitement du Signal, vol. 12, no. 5, 1995.

1See [1], [2] for limitations. These limitations are mainly due to the de�nition and integrability of DWPT coe�cients. In

practice, when dealing with [necessarily �nite] discrete samples of an observed �eld, these limitations have no or little e�ect.

2Function γ is the standard Power Spectral Density (Fourier transform of autocorrelation) for a wide sense stationary �eld.
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Fig. 1. Texture images and their spectra γ̂ computed by using Fourier and wavelet packets. Abscissa of the spectra images
consist of a regular grid over [0, π/2]× [0, π/2].
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Fig. 2. Texture images and their spectra γ̂ computed by using Fourier and wavelet packets. Abscissa of the spectra images
consist of a regular grid over [0, π/2]× [0, π/2].


